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Abstract Vegetation indices (VIs) derived from remote sensing imagery are commonly

used to quantify crop growth and yield variations. As hyperspectral imagery is becoming

more available, the number of possible VIs that can be calculated is overwhelmingly large.

The objectives of this study were to examine spectral distance, spectral angle and plant

abundance (crop fractional cover estimated with spectral unmixing) derived from all the

bands in hyperspectral imagery and compare them with eight widely used two-band and

three-band VIs based on selected wavelengths for quantifying crop yield variability.

Airborne 102-band hyperspectral images acquired at the peak development stage and yield

monitor data collected from two grain sorghum fields were used. A total of 64 VI images

were generated based on the eight VIs and selected wavelengths for each field in this study.

Two spectral distance images, two spectral angle images and two abundance images were

also created based on a pair of pure plant and soil reference spectra for each field. Cor-

relation analysis with yield showed that the eight VIs with the selected wavelengths had

r values of 0.73–0.79 for field 1 and 0.82–0.86 for field 2. Although all VIs provided

similar correlations with yield, the modified soil-adjusted vegetation index (MSAVI)

produced more consistent r values (0.77–0.79 for field 1 and 0.85–0.86 for field 2) among

the selected bands. Spectral distance, spectral angle and plant abundance produced similar

r values (0.76–0.78 for field 1 and 0.83–0.85 for field 2) to the best VIs. The results from

this study suggest that either a VI (MSAVI) image based on one near-infrared band (800 or

825 nm) and one visible band (550 or 670 nm) or a plant abundance image based on a pair

of pure plant and soil spectra can be used to estimate relative yield variation from a

hyperspectral image.

Keywords Hyperspectral imagery � Plant abundance � Spectral angle � Spectral distance �
Spectral unmixing � Vegetation index � Yield

C. Yang (&) � J. H. Everitt
USDA-ARS Kika de la Garza Subtropical Agricultural Research Center, 2413 E. Highway 83,
Weslaco, TX 78596, USA
e-mail: chenghai.yang@ars.usda.gov

123

Precision Agric (2012) 13:62–75
DOI 10.1007/s11119-011-9248-z

Author's personal copy



Introduction

Hyperspectral imagery contains tens to hundreds of bands of spectral data and therefore

provides much finer spectral information than multispectral imagery. Traditionally, broad-

band vegetation indices (VIs) derived from multispectral imagery are commonly used to

characterize crop growing conditions and productivity such as leaf area index (LAI) (Baret

and Guyot 1991), biomass (Moran et al. 1995) and yield (Wiegand et al. 1991; Yang and

Anderson 1999). These VIs are typically a sum, difference, ratio or other combination of

reflectance observations from two or more wavebands. The simple ratio index (SRI)

(Jordan 1969) and the normalized difference vegetation index (NDVI) (Rouse et al. 1973)

derived from the red band and near-infrared (NIR) band are two of the earliest and most

widely used VIs. More recently, many new VIs have been developed to improve the

linearity and sensitivity such as the modified simple ratio (MSR) (Chen 1996) and the

renormalized difference vegetation index (RDVI) (Rougean and Breon 1995) and to

compensate for the effect of soil background such as the soil-adjusted vegetation index

(SAVI) (Huete 1988) and the modified SAVI (MSAVI) (Qi et al. 1994). In addition to the

two-band VIs, several three-band VIs have also been developed, including the modified

chlorophyll absorption in reflectance index (MCARI) (Daughtry et al. 2000) and the tri-

angular vegetation index (TVI) (Broge and Leblanc 2000). MCARI and TVI were origi-

nally proposed for chlorophyll estimation and require 700-nm and 750-nm wavelengths in

the red edge, respectively. Haboudane et al. (2004) proposed two modified versions of

MCARI (MCARI1 and MCARI2) and two modified versions of TVI (MTVI1 and MTVI2)

by replacing the red edge wavelengths with the 800-nm wavelength to lower the sensitivity

to chlorophyll effects, increase the sensitivity to LAI changes and reduce soil and atmo-

spheric effects. MCARI1 and MTVI1 are mathematically the same vegetation index.

Similarly, the MCARI2 and MTVI2 indexes, obtained respectively from MCARI1 and

MTVI1 by the introduction of a soil correction factor represent a single index.

For a multispectral image, which typically contains three bands to seven bands as in

Landsat-7 ETM?, there are only one green band, one red band and one NIR band. The

multispectral image can be easily converted to one single VI image based on the selected

VI. However, a hyperspectral image contains dozens of blue, green, red or NIR narrow

bands and the number of VIs that can be calculated is overwhelmingly large. For example,

if a hyperspectral image has 40 red bands and 50 NIR bands, the number of SRIs or NDVIs

can be as many as 2 000. It is not always practical to calculate and examine all the possible

VIs (i.e., the 2 000 NDVI images in the example) to identify the best VI for a particular

application. Therefore, the commonly used multispectral VIs have been applied to

hyperspectral imagery based on selected narrow bands. For example, the 800 and 670 nm

narrow bands extracted from airborne hyperspectral imagery were used as the NIR band

and red band, respectively, in the broadband VIs for estimating crop LAI (Haboudane et al.

2004) and crop yield (Zarco-Tejada et al. 2005). Other combinations of narrow bands

derived from hyperspectral imagery have also been used for estimating crop growth

parameters (Ray et al. 2006; Wu et al. 2010).

Thenkabail et al. (2000) used ground reflectance data measured in 490 discrete narrow

bands between 350 and 1 050 nm to characterize yield and other crop biophysical vari-

ables. They calculated narrow-band NDVI-type indices with all possible two-band com-

binations of the 490 bands and identified the best band centers and bandwidths for each

crop variable. Based on the results from NDVIs and other hyperspectral indices,

they recommended 12 hyperspectral bands (495, 525, 550, 568, 668, 682, 696, 720, 845,

920, 982 and 1 025 nm) for estimating agricultural crop biophysical information.
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Yang et al. (2004) applied stepwise regression analysis to grain yield monitor data and

102-band airborne hyperspectral imagery and identified four optimum bands for one field

and seven different bands for a second field for estimating yield. Clearly, the identified

optimum bands were the best for the particular datasets from which they were derived and

may not be the best for different datasets. To avoid the need for band selection and make

use of all the bands in hyperspectral imagery, Yang et al. (2007) used linear spectral

unmixing to generate plant and soil abundance images from airborne hyperspectral

imagery for quantifying the variation in crop yield. Yang et al. (2008) also applied spectral

angle mapper (SAM) to airborne hyperspectral imagery to derive spectral angle images for

the same purpose. Both linear spectral unmixing and SAM have been commonly used in

remote sensing for image classification (Bateson and Curtiss 1996; Dennison et al. 2004;

Franke et al. 2009). Fractional abundance images determined by linear spectral unmixing

may be preferred to NDVI as all the bands in the image are used (Bateson and Curtiss

1996). Yang et al. (2007, 2008) demonstrated that both plant abundance images and

spectral angle images provided better r values with yield than most of the 5 151 possible

narrow band NDVIs derived from the 102-band hyperspectral images.

Crop yield is perhaps the most important piece of information for crop management in

precision agriculture. Despite the commercial availability and increased use of yield

monitors, not all harvesters are equipped with them. Relative yield maps derived from

remote sensing imagery can be used as an alternative for both within-season and post-

season management. Relative yield maps can be derived using any of the two-band and

three-band VIs and they can also be generated either from plant abundance images or from

spectral angle images. Two or three center wavelengths (e.g., 800 nm for NIR, 670 nm for

red and 550 nm for green) have to be selected to calculate the VIs, while plant and soil

endmembers need to be defined to derive plant abundance and spectral angle. Although

many VIs are available and different center wavelengths have been suggested (Thenkabail

et al. 2000; Haboudane et al. 2004; Zarco-Tejada et al. 2005; Ray et al. 2006), it is still not

clear which VIs and wavelengths should be used to estimate relative yield variation from a

hyperspectral image. Therefore, the first objective of this study was to compare five two-

band VIs (SRI, NDVI, RDVI, SAVI and MSAVI) based on the 800 and 670 nm center

wavelengths and three three-band VIs (MCARI1, TVI and MTVI2) for yield estimation.

These VIs have been found to be good indicators of LAI and/or crop yield (Haboudane

et al. 2004; Zarco-Tejada et al. 2005). The second objective was to apply one NIR

wavelength (825 nm) and eight visible wavelengths (495, 525, 550, 568, 668, 682, 696 and

720 nm) suggested by Thenkabail et al. (2000) to the five two-band VIs for yield esti-

mation. The last objective was to relate yield to spectral distance, spectral angle and plant

abundance derived from airborne hyperspectral imagery based on a pair of reference plant

and soil spectra for each field and compare the correlations with those from the above VIs.

Methods

Hyperspectral imagery and yield data

The airborne imagery acquired at the boot to half-bloom stages (around peak canopy

development) and yield data collected from two grain sorghum fields (19 and 14 ha in size)

in south Texas were used for this study. The description of the study sites, image acqui-

sition, rectification and calibration as well as yield data collection and processing is

given in the article by Yang et al. (2008). The airborne imagery was acquired using a
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hyperspectral imaging system described by Yang et al. (2003) and contained 102 usable

bands with center wavelengths from 477.2 to 843.7 nm at 3.63 nm intervals. The swath of

the imagery was 640 pixels and the radiometric resolution was 12 bits. The imagery was

converted to a reflectance range of 0–1 based on three 8 9 8 m tarpaulins with reflectance

values of 4, 32 and 48%. The images were resampled to 1-m pixel resolution using the

nearest-neighbor algorithm during the rectification process. The root mean square (RMS)

errors for the rectified hyperspectral images were 3.8 and 4.3 m for fields 1 and 2,

respectively, based on first-order polynomial transformations. Yield data were collected

using an Ag Leader Yield Monitor 2000 system (Ag Leader Technology, Ames, Iowa,

USA). Both the image and yield data were aggregated to 9 m resolution (close to the

effective cutting width of the harvester) and the number of aggregated samples was 2 265

for field 1 and 1 658 for field 2.

Hyperspectral vegetation indices (VIs)

Eight VIs listed in Table 1 were selected as the hyperspectral VIs to be calculated for this

study based on their performance for the estimation of LAI and yield by other researchers.

The five two-band hyperspectral VIs (SRI, NDVI, RDVI, SAVI and MSAVI) were first

calculated based on the 800 and 670 nm center wavelengths suggested by Haboudane et al.

(2004) and the three three-band hyperspectral VIs (MCARI1, TVI and MTVI2) were

calculated based on the center wavelengths given in the formulas.

The second group of hyperspectral VIs was calculated based on the five two-band VIs

using the center wavelengths suggested by Thenkabail et al. (2000). The 12 suggested

center wavelengths include one blue band (495 nm), three green bands (525, 550 and

568 nm), three red bands (668, 682 and 696 nm), one red-edge band (720 nm) and four

NIR bands (845, 920, 982 and 1 025 nm). Because of the narrow spectral range of the

Table 1 Vegetation indices calculated from hyperspectral imagery in this study

Vegetation index Equation Reference

Simple ratio index (SRI) SRI ¼ RNIR=RRed Jordan
(1969)

Normalized difference
vegetation index (NDVI)

NDVI ¼ RNIR � RRedð Þ= RNIR þ RRedð Þ Rouse et al.
(1973)

Renormalized difference
vegetation index (RDVI)

RDVI ¼ RNIR � RRedð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RNIR þ RRed

p
Rougean

and Breon
(1995)

Soil-adjusted vegetation
index (SAVI)

SAVI ¼ 1:5 RNIR � RRedð Þ= RNIR þ RRed þ 0:5ð Þ Huete
(1988)

Modified SAVI (MSAVI)
MSAVI ¼ 0:5 2RNIR þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2RNIR þ 1ð Þ2�8 RNIR � RRedð Þ
q

� �

Qi et al.
(1994)

Modified chlorophyll
absorption in reflectance
index (MCARI1)

MCARI1 ¼ 1:2 2:5 R800 � R670ð Þ � 1:3 R800 � R550ð Þ½ � Haboudane
et al.
(2004)

Triangular vegetation
index (TVI)

TVI ¼ 0:5 120 R750 � R550ð Þ � 200 R670 � R550ð Þ½ � Broge and
Leblanc
(2000)

Modified TVI (MTVI2) MTVI2 ¼ 1:5 1:2 R800�R550ð Þ�2:5 R670�R550ð Þ½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2R800þ1ð Þ2� 6R800�5
ffiffiffiffiffiffi

R670

pð Þ�0:5
p

Haboudane
et al.
(2004)
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hyperspectral data used in this study, there was no NIR center wavelength to match the

four suggested NIR center wavelengths. Thenkabail et al. (2000) stated in the description

of the suggested 845 nm wavelength that a broad band or a narrow band in the NIR

shoulder (845 ± 35) will provide the same results due to the near-uniform reflectance

throughout the NIR shoulder. In order to examine the sensitivity of NIR wavelengths on

the results, the 810, 825 and 840 nm wavelengths were selected as the NIR band and the

other eight visible bands as the red band in the NDVI formula to calculate the 24 possible

NDVI-type indices as well as their correlations with yield for each field. The results

showed that the three NIR wavelengths gave essentially the same results. Therefore, the

825 nm wavelength and the eight visible wavelengths were used to calculate hyperspectral

indices based on the five two-band VIs.

Spectral distance, spectral angle and plant abundance

Spectral distance is a spectral measure commonly used in unsupervised classification and

supervised minimum distance classification (Campbell 2002). The spectral distance

between a pixel spectrum and a reference spectrum can be calculated by Euclidean dis-

tance as follows:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

ðyi � riÞ2
s

ð1Þ

where d is the spectral distance, yi is the reflectance in band i for a pixel, ri is the

reflectance in band i for a reference and n is the number of bands in the image.

Spectral distance has the potential to quantify the variation in crop growth and yield. For

grain sorghum, the best phenological stage is around the peak vegetative development for

yield estimation (Yang and Everitt 2002). For example, if a pure healthy crop canopy is

selected as the reference, the spectral distance between healthy plants and the reference

will be small, whereas the spectral distance between stressed plants and the reference will

be large. Therefore, spectral distance can be used as an indirect indicator of plant health

and cover abundance.

Spectra angle is a spectral measure used in spectral angle mapper (SAM), a spectral

classification technique that assigns pixels to classes based on the spectral angles between

image pixel spectra and reference spectra (Kruse et al. 1993). The spectral angle between a

pixel spectrum and a reference spectrum can be calculated by the following formula:

a ¼ cos�1

Pn
i¼1 yiri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 y2

i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 r2

i

p ð2Þ

where a is the spectral angle between a pixel spectrum and a reference spectrum measured

in radians or degrees, yi is the reflectance in band i for the pixel, ri is the reflectance in band

i for a reference and n is the number of bands in the image. Similar to spectral distance,

spectral angle is also an indirect measure of plant health and abundance. When healthy

crop canopy is selected as the reference, small angle values correspond to healthy plants

and large values correspond to stressed plants.

Fractional plant cover or plant abundance within a pixel can be estimated using linear

spectral unmixing. Linear spectral unmixing models each spectrum in a pixel as a linear

combination of a finite number of spectrally pure spectra of the components in the image,

weighted by their fractional abundances (Adams et al. 1986; Garcia-Haro et al. 1996).

66 Precision Agric (2012) 13:62–75

123

Author's personal copy



If a component such as a healthy crop canopy or a bare soil surface occupies the whole

pixel, then the pixel spectrum can be considered as the reference spectrum or endmember

spectrum of the ground component. For agricultural crop fields, crop plants and bare soil

can be selected as the two meaningful ground components or endmembers for spectral

unmixing analysis (Yang et al. 2007). Thus a simple linear spectral unmixing model has

the following form:

yi ¼ ri1x1 þ ri2x2 þ ei; i ¼ 1; 2; . . .; n ð3Þ

where yi is the reflectance in band i for a pixel, ri1 and ri2 are the known reflectance in band

i for pure crop plants and bare soil, respectively, x1 and x2 are the unknown fractional

abundance for plants and soil, respectively, ei is the residual between actual and modeled

reflectance for band i and n is the number of spectral bands. This model is referred to as the

unconstrained linear spectral unmixing model. For constrained linear spectral unmixing, x1

and x2 should sum to unity.

To calculate plant abundance, a plant spectrum and a soil spectrum are needed. In

comparison, only one reference spectrum is necessary to calculate spectral distance and

spectral angle. Reference or endmember spectra can be obtained directly from the image or

measured on the ground. In this study, healthy crop plants and bare soil were selected as

the relevant endmembers. A pair of plant and soil spectra was extracted from each image to

represent pure and healthy plants and bare soil for the respective field. To obtain pure

spectra for crop plants, 50 pixels that had a bright red color on a color-infrared (CIR) image

(corresponding to healthy plants with a LAI of about 3.5 and high yielding areas) were first

identified from each image. Similarly, 50 pixels that contained pure bare soil were iden-

tified from each image (corresponding to non-vegetative and zero yielding areas). The

endmember spectra for plants and soil for each image were obtained by averaging the

spectra of the 50 respective training pixels from that image. Alternatively, computerized

methods such as the pixel purity index and the n-dimensional visualizer in ENVI (Research

Systems, Inc., Boulder, Colorado, USA) can be used to identify purest pixels for the

endmembers. However, these automatic methods are not always reliable. For example,

weed plants can be mixed with crop plants and atypical soil surface areas with too dark or

too bright colors can be mis-identified as typical soil. Since there were only two end-

members in this particular application, the simple pixel selection approach was used.

Although only one reference spectrum is needed to calculate spectral distance and spectral

angle, both the plant and soil spectra were used. Thus two spectral distance images, two

spectral angle images and two unconstrained abundance images were calculated from all

102 bands for each field based on the two reference spectra using ENVI.

Statistical analysis

For correlation analysis, the 64 images based on the eight VIs and the selected wavelengths

and the six images based on the three hyperspectral measures (spectral distance, spectral

angle and abundance) for each field were aggregated by a factor of 9 to match the 9-m

yield data resolution. The digital value for each output cell was the mean of the 81 input

cells that the 9 m 9 9 m output cell encompassed. Correlation coefficients (r) between

yield and each of the 70 spectral indices were calculated. Linear regression equations

between yield and selected spectral indices were also determined. SAS software (SAS

Institute Inc., Cary, North Carolina, USA) was used for statistical analysis.
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Results and discussion

Table 2 gives the correlation coefficients between grain yield and the eight narrow band

VIs for the two fields. The center wavelengths used to calculate SRI, NDVI, RNVI, SAVI

and MSAVI were 800 nm for the NIR band and 670 nm for the red band. The r values

ranged from 0.74 to 0.78 for field 1 and from 0.83 to 0.85 for field 2. The three three-band

VIs (MCARI1, TVI and MTVI2) were not superior to the two-band VIs for yield

estimation.

Table 3 gives the correlation coefficients between grain yield and NDVI based on the

three NIR bands (810, 825, 840 nm) and the eight visible bands for the two fields. For any

visible center wavelength, the r values were essentially the same among the three NIR

center wavelengths, indicating that any of the NIR center wavelengths can be used.

However, the r values ranged from 0.74 to 0.80 for field 1 and from 0.82 to 0.85 for field 2

among the eight visible center wavelengths, indicating that choices of visible bands affect

the r values. Two green bands (525 and 550 nm) had the highest r value (0.80) for field 1

and the red-edge band (720 nm) had the best r value (0.85) for field 2.

Table 4 summarizes the correlation coefficients between yield and the five two-band

VIs based on the 825 nm NIR wavelength and the eight visible wavelengths for the two

fields. Among the 40 VIs, the r values varied from 0.73 to 0.80 for field 1 and 0.82 to 0.86

for field 2. RDVI, SAVI and MSAVI appeared to produce more consistent r values than

SRI or NDVI among the eight visible bands. For example, MSAVI provided similar

r values of 0.77–0.79 for field 1 and 0.85–0.86 for field 2 among the eight visible bands.

The commonly used NIR and red combinations were not the best for the two-band VIs for

estimating crop yield, whereas the green bands tended to do better than the red bands,

especially for SRI and NDVI. This is partly due to the fact that NDVI tends to saturate

when crop canopy reaches its maximum cover, while green NDVI may have an advantage

over NDVI at the particular crop growth stages. Although the green NDVI was proposed

by Gitelson et al. (1996) for chlorophyll concentration estimation, it has also been used for

yield estimation. The result from this study agrees with the findings of Thenkabail et al.

(2000) and Yang and Everitt (2002). The red-edge band (720 nm) provided higher r values

than the red bands for field 1 and the highest r values for field 2. However, the reflectance

Table 2 Correlation coefficients (r) between grain yield and eight narrow band vegetation indices (VIs)
derived from 102-band hyperspectral images for two grain sorghum fields

Vegetation indexa Field 1 Field 2

SRI 0.74b 0.83

NDVI 0.75 0.83

RNVI 0.77 0.85

SAVI 0.77 0.85

MSAVI 0.78 0.85

MCARI1 0.75 0.85

TVI 0.75 0.84

MTVI2 0.76 0.85

a The eight VIs are defined in Table 1. The center wavelengths used to calculate SRI, NDVI, RNVI, SAVI
and MSAVI were 800 nm for the NIR band and 670 nm for the red band
b All the r values were significant at the 0.0001 level. The number of samples was 2 265 for field 1 and
1 658 for field 2
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around this wavelength can change significantly with wavelength due to the steep slope in

the red-edge portion of the spectrum, so the r values may not be stable. Therefore, MSAVI

based on one NIR band (e.g., 825 nm) and one green band (e.g., 550 nm) appears to be one

of the best choices. As shown in Table 2, a MSAVI image based on the 800-nm wave-

length and the 670-nm wavelength gave equal or similar results for yield estimation.

Table 5 gives the correlation coefficients between grain yield and the three hyper-

spectral measures (spectral distance, spectral angle and fractional abundance) derived from

the 102-band hyperspectral image based on the plant reference spectrum and the soil

reference spectrum for each field. Yield was negatively related to spectral distance and

spectral angle and positively related to plant abundance based on the plant reference

Table 3 Correlation coefficients (r) between grain yield and narrow band NDVI based on three NIR bands
and eight visible bands derived from 102-band hyperspectral images for two grain sorghum fields

Visible band
center (nm)

NIR band center (Field 1) NIR band center (Field 2)

810 nm 825 nm 840 nm 810 nm 825 nm 840 nm

495a 0.79b 0.79 0.79 0.82 0.82 0.82

525 0.80 0.80 0.80 0.82 0.82 0.82

550 0.80 0.80 0.80 0.83 0.83 0.83

568 0.79 0.78 0.79 0.83 0.83 0.83

668 0.75 0.75 0.75 0.83 0.83 0.83

682 0.74 0.74 0.74 0.83 0.83 0.83

696 0.75 0.75 0.75 0.83 0.83 0.83

720 0.79 0.78 0.78 0.85 0.85 0.85

a The NDVI-type indices were calculated with three NIR bands and eight visible bands. The red band in
NDVI defined in Table 1 was replaced by the eight visible bands
b All the r values were significant at the 0.0001 level. The number of samples was 2 265 for field 1 and
1 658 for field 2

Table 4 Correlation coefficients (r) between grain yield and five narrow band vegetation indices (VIs)
derived from 102-band hyperspectral images for two grain sorghum fields

Visible band
center (nm)

Field 1 Field 2

SRIa NDVI RDVI SAVI MSAVI SRI NDVI RDVI SAVI MSAVI

495 0.78b 0.79 0.78 0.77 0.78 0.82 0.82 0.84 0.84 0.85

525 0.80 0.80 0.79 0.78 0.78 0.83 0.82 0.85 0.85 0.85

550 0.80 0.80 0.79 0.79 0.79 0.85 0.83 0.85 0.85 0.85

568 0.78 0.78 0.79 0.79 0.79 0.85 0.83 0.85 0.85 0.85

668 0.74 0.75 0.77 0.77 0.77 0.83 0.83 0.85 0.85 0.85

682 0.73 0.74 0.76 0.76 0.77 0.83 0.83 0.85 0.85 0.85

696 0.73 0.75 0.77 0.77 0.77 0.84 0.83 0.85 0.85 0.85

720 0.78 0.78 0.79 0.79 0.79 0.86 0.85 0.86 0.86 0.86

a The narrow band indices were calculated with one NIR band (825 nm) and eight visible bands. The red
band in the five VIs defined in Table 1 was replaced by the eight visible bands
b All the r values were significant at the 0.0001 level. The number of samples was 2 265 for field 1 and
1 658 for field 2
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spectra. In contrast, yield was positively related to spectral distance and spectral angle and

negatively related to soil abundance based on the soil reference spectra. The magnitude of

the r values ranged from 0.75 to 0.78 for field 1 and from 0.82 to 0.85 for field 2. These

r values for the hyperspectral measures were within the ranges of the r values for the two-

band and three-band VIs examined (0.73–0.79 for field 1 and 0.82–0.86 for field 2). This

finding indicates that the two-band and three-band VIs can be as effective as the all-band

hyperspectral measures for yield estimation.

Yang et al. (2008) evaluated 10 different reference spectra for grain sorghum plants,

soil, roads and water extracted from hyperspectral images and from ground measurements

for calculating spectral angle images. They found that spectral angle images based on

reference spectra derived from bare soil, highway surface or water provided similar or

slightly better r values with grain yield than those derived from plants. When the soil

spectra were used as the reference spectra for generating spectral angle images in this

study, the r values with yield were 0.77 for field 1 and 0.84 for field 2, compared with

-0.77 and -0.83 for the respective fields based on the plant spectra (Table 5). Similarly,

when the same soil spectra were used as the reference spectra for generating spectral

distance images in this study, the r values with yield were 0.75 for field 1 and 0.84 for field

2, which are similar to the r values of -0.76 and -0.85 for the respective fields based on

the plant spectra (Table 5).

Yang et al. (2007) examined how variations in endmember spectra affect plant abun-

dance and its correlations with yield using 15 very different plant and soil spectrum pairs.

Although the selection of the plant and soil endmember spectra affected the magnitude of

the plant abundance values, the correlation coefficients between yield and unconstrained

plant abundance were only minimally affected. In their study, the r values varied from 0.62

to 0.64 for one field and 0.79 to 0.81 for a second field among the 15 plant and soil

spectrum pairs. In this study, the r values between yield and unconstrained plant abundance

were 0.78 for field 1 and 0.85 for field 2. Although the r values for soil abundance (-0.75

for field 1 and -0.82 for field 2) were similar to those for plant abundance, it is more

meaningful to use a plant abundance image as a relative yield map because plant abun-

dance is a direct indicator of plant canopy cover.

Figures 1 and 2 show the scatter plots and regression lines of grain yield with spectral

distance, spectral angle, plant abundance and MSAVI derived from the 102-band airborne

hyperspectral image for fields 1 and 2, respectively. Spectral distance and spectral angle

Table 5 Correlation coefficients (r) between grain yield and three hyperspectral measures (spectral dis-
tance, spectral angle and fractional abundance) derived from 102-band hyperspectral images based on plant
and soil reference spectra for two grain sorghum fields

Hyperspectral measure Field 1 Field 2

Plant-based Soil-based Plant-based Soil-based

Spectral distancea -0.76b 0.75 -0.85 0.84

Spectral angle -0.77 0.77 -0.83 0.84

Abundance 0.78 -0.75 0.85 -0.82

a A pure plant spectrum and a pure soil spectrum extracted from each image were used to calculate spectral
distance, spectral angle and fractional abundance. There were one plant abundance image and one soil
abundance image for each field
b All the r values were significant at the 0.0001 level. The number of samples was 2 265 for field 1 and
1 658 for field 2
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were generated using the healthy plant reference spectra, while plant abundance was

generated based on the healthy plant and soil reference spectra. Grain yield generally

decreased with plant spectral distance and spectral angle and increased with plant abun-

dance and MSAVI as expected. Although clear linear trends existed between yield and

each of the four hyperspectral indices, there was also large variability in yield for any given

value of each hyperspectral index. This is understandable because plant canopies with the

same spectral index value may not always have the same yield value. Nevertheless, the

general linear correlations with yield provide the basis for estimating relative yield vari-

ation from hyperspectral imagery using any one of the hyperspectral measures. Table 6

gives the correlation coefficients among the four hyperspectral indices for the two grain

sorghum fields. The magnitude of the r values ranged from 0.96 to 0.99 for field 1 and from

0.98 to 1.00 for field 2. Clearly, these four hyperspectral indices were highly interrelated.

Figures 3 and 4 present the maps for the four hyperspectral indices as compared with

the actual yield maps for fields 1 and 2, respectively. The spectral values for each map

were arbitrarily grouped into 10–12 classes and different colors were assigned to the

Fig. 1 Scatter plots and regression lines of grain yield with a spectral distance, b spectral angle, c plant
abundance and d MSAVI (NIR = 825 nm and red = 668) derived from a 102-band airborne hyperspectral
image for a grain sorghum field (field 1). Spectral distance and spectral angle were generated using a plant
reference spectrum, while plant abundance was generated based on a pair of plant and soil reference spectra
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classes with red showing low yielding areas and green showing high yielding areas.

Although the four spectral maps reveal some differences, they generally show similar

patterns of plant growth variability, which resemble the patterns on the actual yield maps.

Fig. 2 Scatter plots and regression lines of grain yield with a spectral distance, b spectral angle, c plant
abundance and d MSAVI (NIR = 825 nm and red = 668) derived from a 102-band airborne hyperspectral
image based on a reference plant spectrum for a grain sorghum field (field 2)

Table 6 Correlation coefficients (r) among four hyperspectral indices (spectral distance, spectral angle,
plant abundance and MSAVI) derived from 102-band hyperspectral images for two grain sorghum fields

Hyperspectral index Field 1 Field 2

SDa SA PA SD SA PA

SA 0.96b 0.98

PA -0.98 -0.98 -1.00 -0.99

MSAVI -0.96 -0.97 0.99 -1.00 -0.98 1.00

a SD spectral distance, SA spectral angle, PA plant abundance, MSAVI modified soil-adjusted vegetation
index
b All the r values were significant at the 0.0001 level. The number of samples was 2 265 for field 1 and
1 658 for field 2
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Fig. 3 Maps of a spectral distance, b spectral angle, c plant abundance, d MSAVI and e actual yield for a
grain sorghum field (field 1). The four hyperspectral indices were derived from a 102-band airborne
hyperspectral image of the field

Fig. 4 Maps of a spectral distance, b spectral angle, c plant abundance, d MSAVI and e actual yield for a
grain sorghum field (field 2). The four hyperspectral indices a–d were derived from a 102-band airborne
hyperspectral image of the field
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Conclusions

This study examined five two-band VIs (SRI, NDVI, RDVI, SAVI and MSAVI) and three

three-band VIs (MCARI1, TVI and MTVI2) as well as three all-band hyperspectral

measures (spectral distance, spectral angle and fractional abundance) for yield estimation.

MSAVI produced more consistent and generally higher r values than the other VIs based

on one NIR and eight visible wavelengths. The commonly used NIR and red combinations

were not always the best for the two-band VIs and the green band used as an alternative to

the red band in the two-band VIs tended to do as well as or better than the red band for

yield estimation. In addition, the red-edge band (720 nm) as an alternative to the red band

performed better as well. These findings indicate that VIs based on a NIR and green band

combination or a NIR and red-edge band combination have the potential to do better that

the traditional red and NIR combination for yield estimation.

The three all-band hyperspectral measures provided comparable results with the best

VIs. In practice, the three all-band hyperspectral measures do not need band selection, but

they require one or two reference spectra for the calculation. Compared with spectral

distance and spectral angle, plant abundance derived from a hyperspectral image using

spectral unmixing provides a direct measure of crop canopy cover. This feature makes

plant abundance even more relevant than traditional VIs for crop cover and yield esti-

mation. However, the traditional VIs only need two or three bands, which can also be

obtained from less expensive multispectral imagery. Therefore, if crop fractional cover is

not necessary, one can create a VI (e.g., MSAVI) image based on one NIR band (e.g., 800

or 825 nm) and one visible band (e.g., 550 or 670 nm) from multispectral or hyperspectral

data to characterize crop yield variation. Otherwise, a plant abundance image can be

derived from a hyperspectral image using linear spectral unmixing to estimate crop frac-

tional cover and relative yield. More experiments are needed to validate these recom-

mendations for other agricultural crops over diverse growing conditions and environments.
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